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The eigenfrequencies of a two-mass oscillator moving uniformly along a string
on a visco-elastic foundation are analysed. It is shown that in the case of purely
elastic foundation, the oscillator has either one or two real positive
eigenfrequencies dependent on the system parameters. Taking into account the
viscosity of the foundation, the complex eigenfrequencies of the oscillator are
investigated. The study shows that eigenfrequencies, which are related to
attenuating vibrations of the oscillator, are not uniquely determined. It is found
that the existence of an eigenfrequency v=v0 + id with a small imaginary part
d�v0 is not a sufficient condition for resonance under an external force
P exp (iv0t).
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1. INTRODUCTION

The development of high-speed trains initiated a number of investigations dealing
with the dynamic behaviour of elastic systems interacting with moving loads.
These investigations are important for both the interaction between train and track
and between pantograph and catenary. Concerning the modelling of the load, two
possibilities exist. First a load can be described as a given external force acting
on an elastic system and having no internal degrees of freedom. Such an approach
allows the determination of displacements and stresses of the elastic system. The
second possibility is to take into account the internal degrees of freedom of the
moving object (train bogie or pantograph). Then the contact force has to be
determined from the condition that the displacements of the elastic system and the
load are equal at the loading point. The first approach is simpler to be analysed
and frequently used by investigators [1–5]. It is clear, however, that the inertial
and elastic properties of the moving object must be considered if vibrations take

0022–460X/98/460103+14 $30.00/0 7 1998 Academic Press



U(x,t)
V = constant

y1(t)

y2(t)

M

k

m

x

.   .104

place with a frequency close to one of the resonance frequencies of the moving
object, interacting with the elastic system [6].

This paper is devoted to the analysis of the eigenfrequencies of a two-mass
oscillator uniformly moving along a string. This simple model is chosen to
investigate the problem analytically and to be able to interpret the results
physically in a relatively clear way. Particular attention is paid to the following
questions: (1) How many real eigenfrequencies does the oscillator have, as it
interacts with the elastic system? (2) How does the number of these
eigenfrequencies depend on the parameters of the system? (3) Are all
eigenfrequencies of the oscillator on the elastic system uniquely determined? (4)
Is it always possible to declare that if the system has an eigenfrequency with a small
imaginary part v=v0 + id, d�v0, then an external harmonic force with
frequency v0 leads to resonance?

The analysis of the system shows that the oscillator has either one or two real
eigenfrequencies. The lower real eigenfrequency exists for all parameters of the
system. The higher one disappears in a range of the system parameters. Further
it is demonstrated that the characteristic equation uniquely determines only real
eigenfrequencies and eigenfrequencies related to unstable vibrations of the
oscillator. Eigenfrequencies, related to attenuating vibrations, are not uniquely
determined. A range of system parameters is found where a complex
eigenfrequency v=v0 + id, d�v0 (slightly attenuating vibrations) exists which
does not give the resonance due to an external force with frequency v0.

Though the results obtained have mostly an academic interest, parameters are
chosen in such a way that to some extent the results can be used for the interaction
of a railroad catenary and a moving pantograph.

2. MODEL AND EQUIVALENT STIFFNESS OF THE STRING

A two-mass oscillator moving uniformly along an infinite string on a
visco-elastic foundation is considered; see Figure 1. It is assumed that the lower
mass of the oscillator is always in contact with the string.

Figure 1. Oscillator motion along string on foundation.
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The governing equations, describing the vertical vibrations of the string and the
oscillator are

mUtt −NUxx + bUt + gU=−(mÿ2 + k(y2 − y1))d(x−Vt),

Mÿ1 + k(y1 − y2)=0, U(Vt, t)= y2(t),

U(x, t):0 for x−Vt: 2a, (1)

where U(x, t) is the vertical displacement of the string, m is the mass per unit length
and N is the tension of the string, b and g are the viscosity and the stiffness of
the foundation per unit length, y1(t) and y2(t) are the vertical displacements of the
upper mass M and lower mass m of the oscillator, k is the stiffness of the oscillator
spring and d( · · · ) denotes the Dirac delta function.

For the analysis it is convenient to introduce a moving co-ordinate system
{j= x−Vt, t= t}. In this system, equations (1) take the form

Utt −2VUjt −(c2 −V2)Ujj + õUt + h2U=−
1
m 0m d2 y2

dt2 + k(y2 − y1)1d(j),

M
d2 y1

dt2 +K(y1 − y2)=0, U(0, t)= y2(t),

U(j, t):0 for j:2a, (2)

where c=zN/m is the velocity of waves in the string, h=zg/m characterises the
cut-off frequency and õ= b/m. For a catenary, for example, the wave velocity c
is about c=100 m/s. Although a catenary has discrete supports, it has a cut-off
frequency due to the support stiffness and the weight of the cables. As an
approximation the cut-off frequency can be taken in the range 1 HzQ hQ 10 Hz.
The damping coefficient õ is low. We choose a value of õ=0·01 s−1. The
eigenfrequencies of the moving oscillator on the string can be determined from
equation (2) using the following Fourier transforms

Vv (j, v)=g
�+a

−a

U(j, t) exp (−ivt) dt,

Wk,v (k, v)=g
+a

−a

Vv (j, v) exp (−ikj) dj. (3)

Applying these transforms, one gets

D(k, v) · Wk,v (k, v)=
1
m

(mv2 · z2(v)− k · (z2(v)− z1(v))),

−Mv2 · z1(v)+ k · (z1(v)− z2(v))=0, Vv (0, v)= z2(v), (4)
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Figure 2. Equivalent model in frequency domain.

where D(k, v)=−v2 +2Vvk+iõ(v−Vk)− (V2 − c2)k2 + h2 is the dispersion
relation of the string on visco-elastic foundation and

zi (v)=g
+a

−a

yi (t) exp (−ivt) dt, i=1, 2

are the Fourier displacements of the masses. To find the Fourier displacement of
the string we apply the inverse Fourier transform with respect to k to the first
equation of (4). This yields

Vv (j, v)= (mv2 · z2(v)− k · (z2(v)− z1(v))) ·
1

2pm
· g

+a

−a

exp (ikj)
D(k, v)

dk. (5)

Letting j=0 and using the condition of the contact between the string and the
oscillator (Vv (0, v)= z2(v)), one obtains

z2(v)= (mv2 · z2(v)− k · (z2(v)− z1(v))) ·
1

2pm
· g

+a

−a

1
D(k, v)

dk. (6)

Expression (6) and the second of equations (4) describe the eigenvibrations of the
oscillator in the Fourier domain. These two equations can be written as

$−Mv2 + k
−k

−k
−mv2 + xequi (v)+ k% · $z1(v)

z2(v)%=$00%, (7)

where

xequi (v)=0 1
2pm

· g
+a

−a

dk

D(k, v)1
−1

(8)

is the equivalent stiffness of the string. Introduction of this equivalent stiffness
allows replacing the string under the oscillator by an equivalent spring. Now the
oscillator vibrations can be considered in frames of the discrete model depicted
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in Figure 2. The special property of this model is that the equivalent stiffness of
the lower spring is not a constant, but a complex function of the frequency v and
the velocity V of the oscillator.

To analyse the equivalent stiffness we have to evaluate the integral in equation
(8). The integration can be performed with the help of the Residue theorem. For
the application of this theorem it is convenient to rewrite expression (8) in the form

xequi (v)=0 1
2pm(c2 −V2)

· g
+a

−a

dk

(k− k1) · (k− k2)1
−1

, (9)

where

k1,2 =
1

c2 − n2 ((−vV+ 1
2iõV)2z(−vV+ 1

2iõV)2 − (c2 −V2)(−v2 + h2 + iõv)).

(10)

The location of the poles k1,2 of the integrand in equation (9) depends on the
relationship between the velocity V of the oscillator and the velocity c of waves
in the string. We will further consider the sub-critical motion VQ c (if Vq c, the
equivalent stiffness is infinite and the string behaves as a rigid support). In this
case the poles lie at different sides of the real axis of the complex k-plane. Fixing
the branch of the square root in equation (10) by inequality Im (z. . . . )q 0, one
obtains that the pole k1 (with ‘+’ sign in equation (10)) is located in the upper
half-plane and k2 in the lower one. Closing the contour of integration over the
upper half-plane and, therefore, taking into account the pole k1, one obtains the
following expression for the equivalent stiffness,

xequi (v)=0 1
2pm(c2 −V2)

· 2pi ·
1

(k1 − k2)1
−1

. (11)

Substitution of expressions for k1,2 yields

xequi (v)=
2m

i
· z(−vV+ 1

2iõV )2 − (c2 −V 2)(−v2 + h2 + iõv)

with Im (xequi )q 0. (12)

This expression can be evaluated to give

xequi (v)=2m · z−c2v2 + (c2 −V2)h2 + ic2õv+1/4õ2V 2

with Re (xequi )q 0. (13)

It is important to underline, that the requirement Re (xequi )q 0 should be fulfilled
only for real v (see the definition of inverse Fourier transform). Physically this
requirement implies that the displacement of the string, related to harmonic
vibrations of the oscillator, should decrease as the distance from the oscillator
increases.
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Figure 3. Real part (continuous line) and imaginary part (dotted line) of the equivalent stiffness
xequi as a function of frequency v.

Figure 3 shows the real and the imaginary part of the equivalent stiffness as a
function of the frequency v for zero viscosity of the foundation. One can see from
the figure that for frequencies lower than the cut-off frequency h*= hz1−V 2/c2

in the moving co-ordinate system, the string acts like a spring, which stiffness starts
for zero frequency with x*=2mhcz1−V2/c2 and decreases with increasing
frequency. The reason for the pure real stiffness is that vibrations of the oscillator
with frequencies =v=Q h* excite no waves in the string. These vibrations
correspond to an eigenfield, which moves with the oscillator, and do not extract
energy from it.

Reaching the cut-off frequency h*, the string does not give any reaction
(xequi =0), since a moving load of this frequency causes resonance in the string.
Therefore, a limited excitation leads to infinite displacements under the load.

For frequencies higher than h* waves propagate in the string. This wave
radiation results in a pure imaginary equivalent stiffness of the string. The string
acts in a similar way as a damper.

The velocity V of the oscillator influences both, the equivalent stiffness x* for
zero frequency and the cut-off frequency h*, in the same way (see formulas above).
An increase in V leads to a reduction in these two parameters.

3. EIGENFREQUENCIES OF THE OSCILLATOR

Having analysed the equivalent stiffness, we come back to the system of
equations (7). Letting the determinant of this system be equal to zero, one obtains
the following characteristic equation

k · xequi − k(m+M)v2 − xequiMv2 +mMv4 =0. (14)

Roots of equation (14) determine eigenfrequencies of the two-mass oscillator
moving along the string.
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First the real solutions of characteristic equation (14) will be studied, neglecting
the viscosity of the string foundation. Substituting expression (13) for the
equivalent stiffness and letting õ=0, one can rewrite characteristic equation (14)
as follows

2mcz(h*)2 −v2(k−Mv2)=v2(k(m+M)−mMv2), (15)

where h*= hz1−V 2/c2. In equation (15) v always occurs to the second power.
Therefore, if a positive solution v=+a exists, then v=−a is a solution as well.
Furthermore, one can see that equation (15) can possess real roots only in the
range =v=Q h* (physically it implies that the oscillator can vibrate harmonically
if it does not radiate waves). In this range the square root z(h*)2 −v2 is positive;
see expression (13). This fact allows us to find out domains of possible existence
of real eigenfrequencies of the considered system. Indeed, it follows from equation
(15) that its real roots have to satisfy the inequality

(m+M−mv2/v2
0 )

(1−v2/v2
0 )

q 0 with v2
0 =

k
M

,

which gives

v2

v2
0
Q 1 or

v2

v2
0
q 1+

M
m

. (16)

In the case of a pantograph, magnitudes of the masses are located in the range
1 kgQmi Q 10 kg. As the springs of this structure have different stiffnesses, the
eigenfrequencies lie in a wide range, 1 rad/sQv0,i Q 50 rad/s. Combining
inequality (16) with the condition =v=Q h*, one can draw the following
conclusions: 1. If hQv0, then the domain of possible existence of the real
eigenfrequencies is determined by the inequality =v=Q h*. This domain is shaded
in Figure 4(a). 2. If v0 Q hQv0z1+M/m, then this domain is determined by
the inequality =v=Qv0 for velocities VQ cz1−v2

0 /h2 and by the inequality
=v=Q h* in the interval of velocities cz1−v2/h2 QVQ c. This domain is shaded
in Figure 4(b). 3. If hqv0z1+M/m, then there are two domains of existence
which are plotted in Figure 4(c). The lower domain is determined by the same
expressions as in the previous case and the upper one exists for velocities smaller
than V*= cz1− (v0/h)2(1+M/m) in the interval v0z1+M/mQ =v=Q h*.

Solid lines in Figures 4(a)–(c) show qualitatively the real positive
eigenfrequencies of the oscillator in dependency of the velocity. The
eigenfrequencies are obtained by squaring equation (15) and further numerical
determination of roots of a polynom of the eighth order, located in the domains
of possible existence. One can see from the figures that the moving oscillator has
one real positive eigenfrequency if hQv0z1+M/m (Figures 4(a) and (b)) and
two such eigenfrequencies if hqv0z1+M/m (Figure 4(c)). The lower
eigenfrequency is always smaller than v0, while the higher one is always larger than
v0z1+M/m. This situation is exactly the same as for a classical two-mass
oscillator (Figure 2 with constant xequi ) [7]. The only difference is that in our case
the higher eigenfrequency cannot be larger than h* since in this case the oscillator
begins to generate waves in the string.
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Figure 4. Domains of possible existence of real eigenfrequencies (shaded) for three different cases
of the relation between h, v0 =zk/M and v*=v0z1+M/m. Solid lines show real
eigenfrequencies as functions of the velocity.

Thus, for one set of parameters the oscillator has one real and positive
eigenfrequency and for another set two of them. Here the question might arise
whether in the case of one real eigenfrequency the oscillator has an additional
complex one or not. To answer this question one has to look for complex roots
of the characteristic equation (14).

A particular feature of this equation is that it contains the radical given by
expression (13). The sign of the real part of this radical is fixed, but only for real
frequencies v. Therefore, to analyse complex eigenfrequencies, the radical has to
be analytically extended into the complex frequency domain [8]. It can be done

Figure 5. Branch cuts in the complex v-plane.
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in different ways choosing different branch cuts. To investigate whether this choice
influences the number and location of the complex eigenfrequencies, two possible
cuts are considered. They are depicted in Figures 5(a) and (b) for a small viscosity
of the string foundation (õ�h). The branch points are determined in this case by
the following approximate expression

vbr
1,2 1

iõ
2

2 h*.

It is seen from the figures that brance cuts are chosen to be parallel to the real
axis of the v-plane. The difference is that in Figure 5(a) the v-plane is cut for
=Re (v)=q h* and in Figure 5(b) for =Re (v)=Q h*. The brance cuts depicted in
Figure 5(a) will be further referred to as ‘‘Cut 1’’ and the cut in Figure 5(b) as
‘‘Cut 2’’.

Analytical extension of the square root z−c2v2 + · · · with positive real part
along the real axis gives: Cut 1: Re (z. . . . )q 0 in the entire v-plane; Cut 2:
Re (z. . . . )q 0 for Im (v)Q õ/2 and Re (z. . . . )Q 0 for Im (v)q õ/2.

Physically Cut 1 implies that for an arbitrary complex frequency of the oscillator
vibrations, i.e., for harmonic, unstable and attenuating vibrations, the string
displacement gets smaller as the distance from the oscillator increases. In contrast,
Cut 2 allows the string displacement to grow for attenuating vibrations with the
decrement larger than õ/2. It should not be considered as strange that the string
displacement can grow with the distance from the oscillator. It is due to the fact
that the attenuating eigenvibrations are substantially a transient process. In the
transient process a wave pattern in the string exists only between the fronts of
waves propagating from the oscillator. Therefore, the string displacement can
grow in space with the distance from the oscillator, but only till the fronts of waves
(not till infinity). Along with this spatial grow the vibrations are attenuated in time
and the total energy kept in the string increases in time.

There are three qualitatively different possible locations of the eigenfrequencies
in the complex domain: 1. The lower half-plane Im (v)Q 0. Vibrations with such
frequencies would be unstable. However, in the considered case of the sub-critical
motion VQ c the instability cannot occur; see reference [9]. 2. The band
0Q Im (v)Q õ/2. In this band the oscillator vibrates with decreasing amplitude.
The string displacement decreases with the distance from the oscillator. 3. The
half-plane Im (v)q õ/2. The amplitude of the oscillator vibration decreases in this
domain as well. The string behaviour is, however, not uniquely determined.
According to Cut 1 the string displacement decreases with the distance from the
oscillator. In contrast, Cut 2 implies that this displacement grows.

The complex solutions of equation (14) can be found in the same way as the
real ones. After squaring equation (15), one finds the roots of a polynom of the
eighth order numerically. Subsequently it has to be checked, whether the roots
fulfil the conditions for the square root given above.

Performing this procedure, one can find out that the cuts lead to different
solutions. Choosing Cut 1, only the real eigenfrequencies depicted in Figures
4(a)–(c) are obtained. Due to the viscosity in the string foundation, they have now
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T 1

m (kg/m) N (kN) g (N/m2) b (Ns/m2) m (kg) M (kg) k (N/m)

Parameter set 1 1 0·1 100 0·01 40 20 500
Parameter set 2 1 10 100 0·01 2 20 500

a small imaginary part Im (v)Q õ/2. In the half-plane Im (v)q õ/2 no
eigenfrequencies occur.

In contrast to Cut 1, Cut 2 gives not only the same solutions as Cut 1, but also
additional ones, which lie in the half-plane Im (v)q õ/2. For all possible cases the
total number of eigenfrequencies is the same, namely five. One of these
eigenfrequencies is pure imaginary. It is not investigated in detail since it cannot
lead to resonance. The other four eigenfrequencies are complex. They are situated
symmetrically with respect to the imaginary axis. Thus, in the case when Cut 1
gives only one eigenfrequency with positive real part, Cut 2 leads to an additional
one. Dependent on the system parameters, this additional eigenfrequency is
located in different areas of the half plane Im (v)q õ/2. We will investigate this
additional eigenfrequency for two different sets of system parameters, which are
given in Table 1.

The first set corresponds to the relationship of hqv* depicted in Figure 4(c).
The situation is redrawn in Figure 6, where both, real and imaginary part of the
eigenfrequencies, are shown as a function of oscillator velocity V.

The real eigenfrequencies shown in Figure 4(c) exist for Cut 1 and Cut 2. They
are depicted in Figure 6 by continuous lines. As already mentioned, they have a
small positive imaginary part Im (vi )Q õ/2 because of the small viscosity in the
string foundation and correspond to the string vibrations, decreasing with the
distance from the oscillator. The interesting additional eigenfrequency occurs in
the velocity range VqV* for the Cut 2. It is depicted in Figure 6 by the dashed

Figure 6. Real part and imaginary part of eigenfrequencies, which exist for Cut 1 and Cut 2
(continuous line) and eigenfrequencies, which only occur with Cut 2 (dashed line). For system
parameters, see set 1 in Table 1 resulting in h=10 rad/s; c=10 m/s; õ=0.01 s−1. The system
parameters fulfil the inequality v*Q h; see Figure 4(c).
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Figure 7. Amplitude of vibration of the lower mass m as function of frequency v for three
different oscillator velocities: V=0·3 · c (bold continuous line); V=0·6 · c (dashed line); V=0·9 · c
(thin dotted line). For system parameters, see set 1 in Table 1 resulting in h=10 rad/s; c=10 m/s.
The amplitude is given in logarithmic scale.

line. Since its real part is always larger than h*, this eigenfrequency is related to
an eigenmotion with wave radiation in the string. Due to these waves there exists
an energy flow away from the oscillator. Therefore, oscillator vibrations attenuate
in time and the eigenfrequency has an imaginary part. With growing oscillator
velocity this energy flow becomes higher. Consequently, the imaginary part of the
eigenfrequency increases as well.

Now the question arises, whether this not uniquely determined second
eigenfrequency leads to resonance. To answer this question, we investigate forced
vibrations of the oscillator. Suppose, that a harmonically varying vertical force of
frequency v acts on the upper mass M. Figure 7 shows the amplitude of steady
state vibrations of the lower mass m as a function of frequency for three different
oscillator velocities. These velocities are drawn in Figure 6 as vertical lines.

It is seen from the figure, that with V=V1 (at this velocity two real
eigenfrequencies exist for zero viscosity) the frequency response function is
qualitatively the same as for a usual two-mass oscillator on a spring of constant
stiffness. Both eigenfrequencies lead to strong resonances. Increasing V up to
V=V2 and further to V=V3 (at these frequencies Cut 1 gives only one
eigenfrequency), one still observes a resonance peak at the additional
eigenfrequency. However, this peak decreases as the velocity grows. This is due
to the powerful radiation at higher velocities, which leads to the larger imaginary
part of the eigenfrequency; see Figure 6.

Now we come to the second parameter set, which corresponds to Figures 4(a)
and (b). Here, Cut 2 leads to an additional eigenfrequency (with positive real part)
which appears in the whole velocity range Ve 0. The situation is depicted in
Figure 8.

It is seen from the figure that for low velocities the real part of the additional
eigenfrequency (dashed line) is smaller than h. The imaginary part starts with small
values, which increase in the higher velocity range.
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Figure 8. Real part and imaginary part of eigenfrequencies, which exist for Cut 1 and Cut 2
(continuous line) and eigenfrequencies, which only occur with Cut 2 (dashed line). For system
parameters, see set 2 in Table 1 resulting in h=10 rad/s; c=100 m/s; õ=0·01 s−1. The system
parameters fulfil the inequality v*q h1; see Figures 4(a) and (b).

The effect of this additional eigenfrequency on the resonances of the oscillator
is investigated in the same way as for the first system parameter set. The frequency
response functions for the three different velocities are shown in Figure 9.

An interesting result is related to the solid line depicted in this figure
(V=0·3 · c). Namely, to the high-frequency resonance which is almost absent. It
seems to be against the expectations, since the higher eigenfrequency in this case
is almost real; see Figure 8. To understand this phenomenon one has to remember
that we deal with a system which consists of both a concentrated (oscillator) and
a continuous (string) part. In such systems the condition of resonance should be
extended: not only the eigenfrequency has to be close to the excitation frequency,
but the corresponding patterns of the forced and eigenvibrations should be close.

Figure 9. Amplitude of vibration of the lower mass m as function of frequency v for three
different oscillator velocities: V=0·3 · c (bold continuous line); V=0·6 · c (dashed line); V=0·9 · c
(thin dotted line). For system parameters, see set 2 in Table 1 resulting in h=10 rad/s; c=100 m/s.
The amplitude is given in logarithmic scale.
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Figure 10. Domains of possible location of the additional eigenfrequency. Diagrams show
corresponding patterns of the string.

In the discussed case this is impossible. Indeed, the external harmonically varying
load, applied to the oscillator, can only generate a displacement field in the string,
which decrease as the distance from the load increases. In contrast, the higher
eigenfrequency depicted in Figure 8 corresponds to a string displacement with
growing amplitude; see the diagram depicted in Figure 10, domain A. Therefore,
although the frequency of excitation can be close to the eigenfrequency, the load
will never excite the string pattern corresponding to this eigenfrequency. Thus,
eigenfrequencies, located in domain A (Figure 10), do not lead to resonance even
if they have a very small imaginary part. This is due to quite a fast grow of the
corresponding string displacment making the forced and the eigenvibrations of the
string completely different. Note, that the string displacement grows faster as the
real part of the eigenfrequency gets smaller. Eigenfrequencies with a small
imaginary part, situated in domain B, can give a limited resonance since they are
related to a very slow growing wave pattern in the string, which can be similar
to the force-induced shape.

4. CONCLUSIONS

The eigenfrequencies of a two-mass oscillator moving uniformly along a string
on a visco-elastic foundation have been analysed. First the case of the purely
elastic foundation has been investigated showing that the oscillator has either one
or two real positive eigenfrequencies depending on the system parameters. When
the oscillator has only one real eigenfrequency, the second one does not exist due
to radiation of waves in the high frequency range.

Complex eigenfrequencies of the oscillator have been further studied taking into
account a small viscosity of the foundation. It has been shown that
eigenfrequencies related to attenuating vibrations of the oscillator are not uniquely
determined. Mathematically, this is due to the characteristic equation, containing
a radical. This radical can be extended into the complex frequency domain by
different branch cuts, which lead to different eigenfrequencies. Physically it can
be understood as follows. The considered system consists of two parts: the
oscillator (concentrated system) and the string (distributed system). Consequently,
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the spectrum of such a system should contain a discrete part and a continuous one.
The discrete part of the spectrum is formed by solutions of the characteristic
equation (the eigenfrequencies) and the continuous part is related to the branch
cuts. The non-uniqueness of the eigenfrequencies means that the division of the
spectrum into the discrete and the continuous part is not unique. Any division of
the spectrum provided in the frequency domain will, however, lead to the same
unique expression for the steady state displacement in the time domain. It is
important to emphasise again that only eigenfrequencies related to attenuating
vibrations of the oscillator are not uniquely determined. Eigenfrequencies,
describing harmonic or unstable vibrations, are unique.

It has been found that the existence of an eigenfrequency v=v0 + id with a
small imaginary part d�v0 is not a sufficient condition for resonance under an
external force P exp (iv0t). This is still the necessary condition, but additionally
the shape of the string, corresponding to the eigenvibration with this
eigenfrequency, should be similar to that which occurs under the harmonic
excitation. The more similar both displacement fields are, the higher are the
resonance amplitudes.
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